
NASA-CR-2010SO

Research Institute for Advanced Computer Science
NASA Ames Research Center

A Portable MPI-Based Parallel Vector
Template Library

Thomas J. Sheffier

RIACS Technical Report 95.04 February 1995

A Portable MPI-Based Parallel Vector
Template Library

Thomas J. Sheftter

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 212, Columbia, MD 21044, (410) 730-2656

Work reported herein was supported by NASA Contract Number NAS 2-13721 between NASA and the Uni-

versities Space Research Association (USRA). Work was performed at the Research Institute for Advanced

Computer Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000.

A Portable MPI-Based Parallel Vector Template Library

Thomas J. Sheffler *

Abstract

This paper discusses the design and implementation of a polymorphic collection library for distributed
address-space parallel computers. The library provides a data-parallel programming model for C++ by
providing three main components: a single generic collection class, generic algorithms over collections,
and generic algebraic combining functions. Collection elements are the fourth component of a program
written using the library and may be either of the built-in types of c or of user-defined types. Many ideas
are borrowed from the Standard Template Library (STL) of c++, although a restricted programming
model is proposed because of the distributed address-space memory model assumed. Whereas the
STL provides standard collections and implementations of algorithms for uniprocessors, this paper
advocates standardizing interfaces that may be customized for different parallel computers. Just as the
STL attempts to increase programmer productivity through code reuse, a similar standard for parallel
computers could provide programmers with a standard set of algorithms portable across many different
architectures. The efficacy of this approach is verified by examining performance data collected from an
initial implementation of the library running on an IBM SP-2 and an Intel Paragon.

1 Introduction

The data-parallel programming paradigm has proven to be popular because of its power and simplicity.

While it is not entirely suitable for all parallel applications, a large number of applications are easily

expressed in this paradigm. The acceptance of High Performance Fortran (HPF), with its large core of

data-parallel array operations, shows that many computer and compiler vendors are committed to providing

support for this model in the future [7].

The concept of collections lies at the center of all data-parallel programming languages. In these

languages, there are two types of parallelism that can be understood in terms of collections. Simple

elementwise parallelism is expressed by applying an operation to all of the members of a collection in

parallel. Aggregate parallelism is expressed as a parallel algorithm defined over an entire collection.

Typically, the collections are arrays or vectors, but other collections are possible.

There is a link between collection-oriented programming and object-oriented systems that is often not

recognized. Most object-oriented systems provide polymorphic collection classes that manage heteroge-

neous sets of objects [4]. Traditionally, polymorphism is implemented through a class hierarchy using

inheritance (although other mechanisms are possible). Common functionality is provided for a group of

types by "inheriting" the functionality from a base class. All classes derived from this base class then have

a minimal set of member functions that a collection class can use to manage its elements.

*Research Institute for Advanced Computer Science, Marl Stop T27A-1, NASA Ames Research Center, Moffett Field, CA

94035-1000 (she f f l er@ r i ac s. edu) The work of this author was supported by the NAS Systems Division via Contract NAS

2-13721 between NASA and the Universities Space Research Association (USRA).

The Standard Template Library (STL) uses ad-hoc polymorphism and generic classes and functions

to provide polymorphic collections. Along with the definition of a small number of collection classes,

the STL also provides algorithms on those collections whose implementations run as fast as hand-coded

C for many applications [11]. Instead of using classes to inherit common functionality, generic functions

define operations that the compiler can instantiate for any type. There are two advantages to using generic

functions to describe polymorphism instead of inheritance. First, generic functions (if carefully written)

may avoid the overhead of calls to member functions, leading to improved performance. Secondly, generic

functions can provide new functionality for the built-in types of C, which are not classes in C++ [12]. It is

because of these two points that template functions can provide high-level operations on collections of the

built-in types and obtain the same performance achieved by hand-coded C.

This paper discusses the design and implementation of the Amelia Vector Template Library (AVTL),

a polymorphic collection library for distributed address-space parallel computers. Like the STL, it is

template based rather than inheritance based. However, because a distributed address-space memory model

is assumed, significant restrictions must be placed on the programming model provided by the library. For

example, the full generality of the iterators of the STL are not permitted. Instead, a restricted form of access

to elements, through elementwi se functions, provides the necessary safety.

Many collection types exist in data-parallel programming languages. This initial experiment targets only

the simplest distributed data type: the vector. Even with only one collection type, there is a significant amount

of complexity to be considered. For example, algorithms on vectors often employ algebraic combining

functions (e.g., addition in a parallel-prefix algorithm). The library has been carefully designed so that

algorithms are generic with respect to all element types and algebraic combining functions. A framework

for describing algebraic combining functions is presented that links algebraic combining functions with

their identity values, and readily extends to new data types.

The remainder of this paper begins by discussing generic classes and functions, and then introduces the

components of the library. Its design emphasizes the orthogonality of element types, collection types, algo-

rithms, and algebraic combining functions, and presents a mechanism for the customization of algorithms

through function objects. These modify the actions of the algorithms (for both primitive and user-defined

types) but do not incur the overhead of a function call, as normal functions do. Examples are used to show

the ways in which the components of the library combine, and how they may be extended for user-defined

data types. Finally, performance data collected on an IBM SP-2 and an Intel Paragon verify that the initial

implementation yields performance comparable to that of hand-coded C.

1.1 Algorithmic Templates

Templates are algorithms that may be parameterized by type and function. For example, an algorithm

to sort requires knowledge of an element type and comparison function. An algorithm to find transitive

closure requires specification of the element type as well as the addition and multiplication functions of the
mathematical ring over which to find closure.

A standardized set of algorithms enhances programmer productivity by raising the level of abstraction,

while simultaneously providing program portability. Instead of re-targeting an entire program for a new

architecture, a standard set of algorithms provided for many architectures ensures the portability of any
program written in terms of these algorithms.

Standard function libraries, such as the BLAS [8], are an effort in this direction, but often lack the

abilities of polymorphism and function specialization. These capabilities have been lacking in the past

because there has not been a widely available programming language that allows the specification of generic

algorithms.TheC+÷functiontemplatemechanismprovidesagoodfoundationfortheencapsulationof the
specificationof genericalgorithms.

1.2 A Case for Standard Parallel Collections

This paper advocates standardizing a set of generic collections and algorithms suitable for distributed address-

space parallel computers. To a limited extent, such a library would replace some of the functionality of

current data-parallel compilers. Compilers for data-parallel languages, such as those for HPF, are responsible

for the instantiation of parallel algorithms on collections. A simple example is the reduce function of HPF

on arrays. C++ templates provide a way to move this functionality out of the compiler and into a library

without sacrificing performance in the way that subroutine libraries often do. By establishing standards for

interfaces to parallel collections, it should be possible to experiment with and add new collection types in

the future without modification to the underlying compiler.

Of course, many low-level optimizations are beyond the scope of a template library. Such optimizations

as loop fusion and array blocking must be handled at a lower level. While many C compilers do not currently

implement these optimizations, a growing number are beginning to perform these types of optimizations that

have typically been the domain of Fortran compilers [3, 6]. It is reasonable to expect that these optimizations

will be commonplace in the C compilers of the next few years. In much the same way the programmers of

vector computers write vectorizable code, algorithms in the template library could be written in a scalable

style so that compilers can recognize the appropriate optimizations.

Whereas the STL standardizes both interfaces and algorithms, this is not in general possible for dis-

tributed address-space parallel computers. Instead, the interfaces may be standardized, but separate im-

plementations may have to be provided for different classes of machine. This initial implementation uses

standard C++, and MPI for communication [9], and thus is portable to a wide variety of current distributed

address-space parallel computers. However, shared memory multiprocessors and vector multiprocessors

present architectures for which an entirely different implementation would be necessary. By standardizing

interfaces to functions that have efficient implementations on many architectures, a template library can

provide a substrate for the development of portable parallel programs.

1.3 An Initial Implementation

The initial implementation of the library uses MPI (Message Passing Interface) [9] for interprocessor

communication, ensuring portability to a wide variety of architectures. C++ templates are used to provide

a single generic vector class and many generic algorithms on vectors. Algorithms are parameterized by

element types and function objects.

The use of function objects with template algorithms ensures high performance by allowing user defined

functions to be compiled in-line, avoiding the overhead of a function call for the application of the function.

The compiled code resulting from the instantiation of the template algorithms provide the performance of

hand-written C. In addition to simplifying the library design, this capability emphasizes the orthogonality

of element types, collection types, algorithms, and algebraic combining functions, and allows them to be

combinined in many ways.

Function objects are used uniformly in the library to specify algebraic combining operations for arbitrary

data types. For instance, the vector library provides parallel prefix (scan) algorithms for vectors of any

homogenous type. For any binary associative operator, _, with an identity element 0, and a vector a, a scan

computes a result b that is defined as

b0 = 0

bi = bi-I • ai_l.

In the AVTL, there is a single scan algorithmic template and the binary operator and identity element are

parameters of the algorithm. Other parallel vector libraries have offered one of two approaches to providing

scan functions. To ensure high performance, some provide specialized scan algorithms for a limited number

of data types and operators [1]. This approach does not generalize to user defined types. More general

libraries have accepted function pointers to allow the user to define any binary associative operator [9]. This

approach suffers a performance loss because the repeated invocation of the function may be unacceptably

expensive.

Function objects are like function pointers except that the compiler may have complete information

about the function so that it can be inlined at compile time. The template-based approach offers the benefits

of genericity, efficiency and extensibility. Generic algorithms may be instantiated for any type and function

object. Furthermore, users may freely add new element types and combining function objects to extend the

vector library with added functionality.

The AVTL comprises four main components that are carefully designed to work together.

.

,

3.

°

A memory manager. The memory manager is implemented as a class and has member functions that

allocate memory over the available processors in equal sized chunks.

A generic distributed collection class: the vector. It is implemented as a template class.

Generic algorithms on vectors. These are implemented as template functions. Standard algorithms

are elementwise operations, vector permutations, scan and segmented scan operations, reductions,

segmented reductions, and combining sends and fetch-and-add communication functions.

Generic function objects. These parameterize the vector algorithms to vary the way in which vector
elements are combined or fetched.

The library handles homogenous vectors of any fixed-size type. A large number of predefined function

objects and algorithms provide standard vector operations on the built-in types of C, but users may easily

introduce new element types and function objects.

1.4 An Example

Before delving into the details of the AVTL, a short example will demonstrate some of the features of

the library. The vector collection template class is called the pvect (for Parallel Vector). The vector

constructor accepts a length argument, and an optional value with which to initialize the elements of the

vector. By default, the elements are distributed in equal sized blocks over the available processors.

pvect<int> ones(lO, i);

pvect<double> twos(lO, 2.0);

// length i0, elements set to 1

// vector of doubles

A vector that enumerates its sites from 0 is called an "index vector." An index vector may be computed

from the ones vector by using the scan algorithm with addition as the binary associative operator. The

4

AVTL provides a generic algorithm for scans and a set of standard generic binary associative operators in

the form of function objects. These function objects are parameterized by type. An index vector could be

created by the following application of the scan algorithm with the addition function object for integers.

(Do not be alarmed by the syntax -- it becomes familiar quickly.)

pvect<int> index : op_scan(add_op<int>(), ones);

A user-defined data type may be used with the AVTL as easily as a builtin type. The following class

defines a type that represents a point on the plane in polar coordinates. The class also defines the addition

operator for objects of type po 1 ar.

class polar {

double theta, mag;

public:

polar (double init) { theta = 0.0; mag = init; }

polar operator+(polar a)

{

polar b;

double bx = a.mag *

double by = a.mag *

b.mag =

b.theta =

return b;

cos (a.theta)

sin (a.theta)

sqrt (bx*bx + by*by) ;

arctan (by/bx) ;

+ this->mag * cos(this->theta);

+ this->mag * sin(this->theta);

};

With this new data type and an addition operator, it makes sense to speak of performing an add_scan on

vectors of polar elements. Because the addition operator is an inlined member function of class polar,

it will be inlined in the instantiation of the op_scan algorithm produced for this type, and the performance

of the add_scan function on polar types will be as good as a function hand-written expressly for that

purpose. The following call to op_scan will produce the prefix sum of a vector of polar coordinates. The

generic combining function, add_op may be applied because addition is defined for the polar type.

pvect<polar>

pvect<polar>

a(lO0, polar(l.O)); // intialized to 1.0

prefixsum = op_scan(add_op<polar>(), a);

This is a small example of the extensibility of the library. More interesting examples require an

understanding of function objects. In summary, the combination of template algorithms and function

objects provide an extensible library with the efficiency of hand written code for any vector element type.

1.5 Organization

The rest of the paper discusses the components of the vector library. Two brief sections introduce the

memory manager and the vector template class. The vector class section also describes segment descriptors

and how they are internally managed. Section 4 describes function objects and why they are important

5

to the library both for expanding its functionality and to ensure high performance. The large number of

predefined generic function objects provided by the library make it useful for all of the built-in data types

of C++, but it is the extensibility of the library through function objects that makes it interesting.

Section 5 is devoted to describing the element-wise application of functions to conforming collections.

Because element-wise operations are often the core of a data-parallel program, it is important that the library

provide a convenient way to express them. This section also describes how the library can identify scalar
data types in mixed-mode (vector/scalar) calculations.

Section 6 describes the generic algorithms and function objects provided by the library. Section 7 briefly

discusses some of the difficulties encountered in interfacing with MPI. This section touches on both the

implementation of the messaging passing using MPI, and the problems encountered with interfacing the

AVTL template algorithms to the MPI subroutine interface.

Section 8 presents the results of performance tests collected on the Intel Paragon and the IBM SP-2.

These results illustrate that the template-based approach yields performance on par with that of hand-coded

C. Finally, a concluding section summarizes some of the points made in the paper and suggest directions for
future work.

2 Memory Management

The Amelia Vector Template Library AVTL provides a standard integrated memory manager defined by the
class am..mem__mffrat:. A brief description of the function of this class follows.

A request for a vector of a given size is broken into equal sized chunks across the available processors.

Each chunk maintains an opaque descriptor that records its size, starting index in the allocated vector,

beginning address in memory, and ending address in memory (by convention, this is the address immediately

following the last element of the chunk). The memory manager returns a pointer to the beginning of the

chunk and provides access to the information of the chunk descriptor through access functions.

The memory manager class provides very few member functions. There are methods for allocating

and freeing vector memory on the heap, and functions for allocating vector memory on a stack. The stack

functions, push and pop must be nested properly in a correct program. The memory manager also provides

methods for printing statistics about the memory use of the program.

Because memory management of distributed vectors is often linked to initialization of the parallel ma-

chine, the memory manager assumes the responsibilty of initializing the underlying parallel communication
library.

3 The Parallel Vector Collection Class

A parallel vector is an instance of the pvecl= template class, parameterized by an element type. The primary

responsibility of the vector class is coordinating the allocation and freeing of vector memory. Each instance

of a parallel vector is actually a pointer to a hidden vector descriptor that maintains information about the

vector's type, length and location in vector memory. Two or more vectors may share the same descriptor,

and thus refer to the same location in vector memory. The constructors and destructors of the class maintain

reference counts on vector descriptors to determine when vector memory may be released by the memory

manager.

The reference counting scheme minimizes the copying of vector data. When passing vectors as argu-

ments to functions, the only thing that is copied in as an argument or out as a result is a pointer to the

descriptor. Vector assignment is likewise defined through the sharing of descriptors. Most vector operations

retum a new vector so that application of one function does not cause a side effect in another shared vector

elsewhere. If a true copy in a new vector is required, the copy member function may be used.

There are four constructors for pvect vectors. The default constructor does not allocate any vector

memory. With a single integer argument, vector memory is allocated for the given number of arguments;

an optional second argument specifies an intial value for each element of the vector. The copy constructor

for a pvect shares the descriptor of the argument and increments the reference count.

The following example illustrates the four different constructors. The destructor for a vector decrements

the reference count of the descriptor and frees the allocated vector memory when the count reaches zero.

pvect<int> a; // no vector memory allocated

pvect<int> b(100); // allocated

pvect<int> c(100, 5); // allocated, initialized

pvect<int> d = c; // c and d share the same vector memory

The other member functions of the pvect class are listed below. Some implementations of the pvect

interface may include other member functions, but these may not necessarily be supported in future releases.

template <class T>

class pvect {

pvect<T> copy();

T get(int pos);

int len();

int slen();

// produce a copy of the vector

// retrieve a value from a position

// get the length of the vector

// if this vector is a segment descriptor,

// return the length of the

// segmented vector

// These members MODIFY the contents of the vector

void replace(int pos, const T val)

// replace the value at a position

void dist(const T val) // distribute a value across the vector

void send(pvect<T> vals, pvect<int> positions)

// send values into the positions given

};

3.1 Segment Descriptors

Many vector operations accept an additional argument that designates segments within the vector. A segment

is a contiguous range of sites. Each segment is itself a vector, and segmented vector functions perform a

parallel function over all of the segments of a vector simultaneously [2]. For example, a segmented scan

computes a recurrence in which the running sum is reset to 0 at the beginning of each segment.

There are many ways to represent segment descriptors. One representation is called the startbits

descriptor. For a vector of length l, the startbits descriptor is a boolean vector of length l with a 1 at the

beginning of each segment, and with 0 everywhere else. An altemate representation is the segment-lengths

descriptor. This is a vector of integers whose sum is l; each element of the segment-lengths descriptor gives

the length of a segment.

7

The AVTL uses the segment-lengths descriptor variety, whose type is simply pvec t < int > (there is no

special segment descriptor type). Internally, the library may compute an alternate representation (such as the

startbits form) for use within the algorithm. The library caches any such representation, so that reusing the

same vector as a segment descriptor will avoid recomputing the internal form. The cached representation is

flushed however if the segment vector is modified in any way.

Users of the library need not concern themselves with the internal caching of segment descriptors,

except when evaluating the performance of programs. The first time a vector of integers is used as a

segment descriptor additional time may be required to compile and cache the internal segment descriptor.

After that, the intemal form is used directly.

4 Function Objects

A function object is an object with an operator () () defined. In the contexts in which C programmers

would expect to pass a pointer to a function in a library subroutine, a C÷+ function object is used in a

template library. Algorithmic templates expecting function objects may also be used with regular function

pointers too. However, function objects offer the advantage that inlined member functions do not incur the
overhead of a function call.

4.1 Binary Associative Operators and Identity Values

In the parallel algorithm literature, efficient parallel algorithms are well known for scans and reductions

using arbitrary binary associative operators (a "binop", for short) [2, 13]. Most of these algorithms require

the specification of the identity element associated with the binary operator. The AVTL adopts the following

convention: a binary associative operator is an object with two required member functions.

1. operat or () () is a member function of two arguments performing the binary associative operation.

2. identity () is a member function of no arguments that returns the identity element of the appro-

priate type for the binary associative operator.

A suitable binary associative operator for the addition of integers is shown below.

class add_op_int {

public :

int operator () (int

int identity()

};

a, int b) { return a + b; }

{ return O; }

Binary associative operators are used uniformly throughout the library to pararneterize the following

algorithmic templates.

1. exclusive scans (segmented, unsegmented)

2. inclusive scans (segmented, unsegmented)

3. reductions (segmented, unsegmented)

4. combining-sends (like the add_scatter of HPF)

A largenumberof binaryassociativeoperators(binops)arepredefinedasgenerictemplateclasses.
Thesemerelygivenamesto standardelementwisealgebraicoperations:add, mul, max,min, and, or
andxor, fst (returnthefirstarg)andscd (retumthesecond).Forexample,theadditionbinopis defined
asfollows. Becauseit invokesoperator+, thisbinopis definedfor anytypefor whichtheaddition
operatorisdefined.

template <class T> class add_op {

public :

T operator() (T a, T b) { return a + b; }

T identity () { return zero_val<T> (); }

};

The preceding template class introduced yet another template class: the identity values. The predefined

binops require knowledge of four special values of each type. These are the zero value (identity for addition),

the one value (identity for multiplicaiton), the minimum value of the type (identity for maximum) and the

maximum value of the type (identity for minimum). The template class definition for the zero value follows.

template <class T> class zero_val {

public :

operator T { return 0; }

};

Whenever any object of type zero_val<T> is used in a context where a value of type T is required,

the appropriate value is returned. For most builtin types, an appropriate conversion exists from 0 to the

builtin type (integer, character, long double, etc.).

The identity classes for all of the builtin types use template specialization and the values from the

standard C include file < 1 imi t s. h> to pre-define the four identity values for each of the builtin types.

Thus, for all of the builtin types of C, appropriate identity values are predefined based on the storage formats
of the target architecture.

The structure of the binops and identity classes gives users flexibility about how new types and binops

are integrated into the library. For a new type, the user may explicitly create binop function objects with the

required members. These may specialize some of the predefined binops (e.g. add op) for the new type,

or may have completely new names. Alternatively, the user may simply provide definitions of the standard

C arithmetic operators for the new type, as well as specializations for the identity classes. Then, the generic

binop classes may be instantiated for all of the predefined binops. Note that if the binop does not have a

standard name, the former approach is required.

4.2 Pseudo Binops

Most combining functions can be described merely by defining an appropriate function object. However,

there is one combining operation used in conjuction with a combining send that does not fit this mold: it is

the "append" operator, indicated by an app_op<T> function object. This binop may only be used with the

combining-send function and causes element values sent to the same site to be placed in contigous sites in

the result vector. The implementation of a send-with-append function actually requires an algorithm quite

different from that of the other combining sends. A specialized template algorithm is defined for the case

when the combining operator is of type app op<T> This type does not have any member functions, but

serves merely as a placeholder. In this way, the illusion of"append" as a binop is preserved, even though a

different algorithm is invoked.

5 Elementwise Operators and Scalar Extension

All of the standard C arithmetic operators (+, -, *, /, %, <<, >>, I, &, ^) are extended to mean the

elementwise application of the operator to the elements of the vectors in parallel. For instance, if a and b

are vectors, a+b is their elementwise sum. If the elements of a and b are of differing type, the resulting

vector will have the type of the left argument. This is not as general as the standard C type coercion rules,
but is a workable solution.

The AVTL does not provide automatic scalar extension, because it is difficult to recognize scalar values

with template arguments. Scalar extension is the ability to add a constant to all elements of a vector, for

example, without explicitly distributing the constant across a new vector. The user of the AVTL can specify
such scalar extension, but only by identifying scalar variables explicitly.

The scalar template class is used to indicate scalar extension for elementwise operators. A shorthand

function, called make_scalar, may also be used. It attempts to deduce the type of the scalar from its
argument.

The following illustrates two equivalent ways of adding 5.0 to each of the elements of a vector. The

first method explicitly creates a scalar of type double, the second uses make_scalar to deduce the type
from its argument, 5.0.

pvect<double> a(100, 4.0);

pvect<double> b = a + scalar<double>(5);

pvect<double> c = a + make_scalar(5.0);

5.1 Comparison Operators

The standard C comparison operators (==, !=, <, >, <=, >=) are similarly extended. A scalar may be the

either argument in such a comparison. The result of all comparisons of vectors is of type pvect< in t >.

5.2 Assignment Operators

The assignment operators of C have not been redefined to be meaningful for vectors. Most operations in the

AVTL produce a new vector as a result. An assignment operator would modify the value of a (potentially
shared) vector. While these operators would be useful, at this point the ramifications of their inclusion are
not fully understood.

5.3 Elementwise application of arbitrary functions

The e 1ementwi s e template function applies an arbitrary function object to each of the elements of one or

more vectors. Because the type of the value returned by a function object cannot be matched by a template
argument, the user must give an argument that is of the type of the result desired.

Five variants of the elementwise function are provided. They apply functions of 1,2, 3, 4 or 5 arguments
to the elements of the corresponding vectors.

pvect<T> result = elementwise(fn, pvect<T>(), a)

pvect<T> result = elementwise(fn, pvect<T>(), a, b)

pvect<T> result = elementwise(fn, pvect<T>(), a, b, c)

pvect<T> result = elementwise(fn, pvect<T>(), a, b, c, d)

pvect<T> result = elementwise(fn, pvect<T>(), a, b, c, d, e)

I0

The function argument to an elementwise function may be either a function object or a function

pointer. For example, the Unix cosine function may be applied to each of the elements of a vector, producing
a vector of the cosines.

pvect<double> cosines = elementwise(cos, pvect<double>(), argvector)

Functiono_ects used with elementwise functions areuseful _r theirinlimngcapabilities. Assume

thm a, b and c arethreevectorsin the _llowingexample.

pvect<double> result = a * b + c;

This expression calculates the elementwise product of a and b, places it in a temporary vector, adds

the elements of c and places the result in a new vector. Besides the overhead of allocating and freeing the

temporary vectors, this operation suffers from writing the temporary values out to memory. A more efficient

solution is to use a function object and the elementwise function.

class multadd {

public:

double operator() (double x,

{ return x * y + z; }

};

double, y, double z)

pvect<double> result = elementwise(multadd(), pvect<double>(), a, b, c);

The resulting code is certainly less readable, because the multiply-add operation must be written as a

separate function. However, when absolute high performance is a necessity, this technique can be used

in critical regions of a program. The construct ensures that the layout of the vectors in memory remains

hidden, but the use of the function object ensures that the performance meets that of a hand-coded loop.

Elementwise functions are also useful when operating on members of vectors of user-defined structures.

5.4 Zipping Vectors

The AVTL borrows the pair template type from the STL. A pair is parameterized by two types and may

hold two values of any type.

template <class TI, class T2>

class pair {

public :

T1 first ;

T2 second;

pair(const T1 &x, const T2 &y) : first(x), second(y) { }

};

Pairs are useful in many contexts. When using the AVTL, pairs can help to speed some communication

operations. For example, if permuting two vectors by the same permutation vector, it may be more efficient

to pack them into a single vector of pairs and then to perform the permutation. Of course, a user could

define an appropriate structure to hold the pair, and could then load the values into a vector of pairs using

11

the e iementwi se function with a new function object. After the permutation, the pairs would have to be

unpacked using another new function object.

This sequence of steps is so frequent that helper functions are included in the AVTL. The function zip

accepts two vectors of any type as arguments and produces a vector of pairs1.

pvect<double> a;

pvect<complex> b;

pvect<pair<double, complex> > c = zip(a, b);

A vector of pairs may be separated by using the unzip functions. There are two: one returns the first

elements, the other returns the second elements.

pvect<double> new_a = unzipl(c);

pvect<complex> new_b = unzip2(c);

To return to the original problem that motivated including the pair type, assume that there are two vectors

which are to be permuted the same way. The naive way to accomplish the permutation is to use two calls

to the permute function.

pvect<int> p; // The permutation vector

pvect<double> perm_a = permute(a, p);

pvect<complex> perm_b = permute(b, p);

Using the zip functions, a single permute will suffice, but additional data movement will have to be

peformed locally. The tradeoff may be beneficial if communication is very expensive (and it usually is).

The resulting code is only slightly more ugly than the original.

pvect<pair<double, complex> > temp = permute(zip(a,

pvect<double> perm_a = unzipl(temp);

pvect<complex> perm_b = unzip2(temp);

b), p);

6 Algorithms on Vectors

The AVTL provides a large number of standard algorithms for vectors. Most of these are provided in

both segmented and unsegmented variants with function overloading used to differentiate between the two.

Rather than list all of the algorithms and their arguments, this section only lists the algorithm names and

gives a brief description of their function. The following two tables list the generic permutation and scan

algorithms provided by the library.

1Guy Blelloch first named this operation "zip."

12

Generic Permutation Algorithms

Algorithm Unsegmented Segmented Comment

X Xpermute

send

cond_send

unpermute

get

cond_get

X

X

X

X

X

X

X

X

X

X

One-to-one permutation within a

vector or segment.

Scatter

Conditional scatter

Backwards permutation

Gather

Conditional gather

Generic Scans and Reduction Algorithms

Algorithm Unsegmented Segmented Comment

op_scan X X Exclusive scan

op_i scan X X Inclusive scan

op_reduce X X Reduction

The pre-defined generic binops give names to the arithmetic operators of C. As described earlier, the

binops have an associated identity value, as listed in the table below. When one wishes to use a new type

with the vector template, it is sufficient to define the appropriate operator and to specialize the identity value

if the default is not appropriate.

Pre-defined Generic Binop Classes

Name Uses Identity Comment

add_op

mul_op

max_op

min_op

and_op

or_op

xor_op

fst_op

scd_op

app_op

operator+

operator*

operator>

operator<

operator&

operatori

operator ^

zero_val

one_val

min_val

max_val

one_val

zero_val

zero_val

zero_val

zero_val

Addition

Multiplication
Maximum

Minimum

Boolean AND

Boolean OR

Exclusive-Or

First (left) argument

Second (right) argument

Append arguments (a

binop)

pseudo

The library provides shorthand names for common variants of the scan and reduction functions. These

are merely pre-defmed functions that make use of the generic algorithm and a particular generic binop. This

table reveals that some of the basic scan functions (such as index) are in fact derived from the generic

scan algorithm.

13

Pre-defined Scan Functions

Algorithm Unsegmented Segmented Comment
add_scan

mul_scan

max_s can

min_scan

and_scan

or_scan

xor_scan

copy_scan

index

rshl

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Copy a value across a vector or

segment.
Create a vector that enumerates

its sites.

Right shift a vector by one

position.

Pre-defined Reductions

Algorithm Unsegmented Segmented Comment
add_reduce

mul_reduce

max_reduce

min_reduce

and_reduce

or_reduce

xor_reduce

maxloc

minloc

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Find the location of the maximum

value in a vector or segment.

Find the location of the maximum

value in a vector or segment.

The library also provides two-phase communication operators that separate the specification of a commu-

nication pattern from using that pattern to send data. The first phase is called communication"compilation."

When data is repeatedly sent in the same pattem, the total bandwidth achieved can often be greatly improved
by re-using a communication schedule.

Pattem Compi Iation Functions

Algorithm Unsegmented Segmented Comment

permut e_comp X X

send_comp

cond_send_comp

unpermute_comp

get_comp

cond_get_comp

X

X

X

X

X

X

X

X

X

X

One-to-one permutation within a

vector or segment.
Scatter

Conditional scatter

Backwards permutation
Gather

Conditional gather

The result of communication compilation is a data-object called a "schedule." A schedule is used

with the run function to actually move data. The run function may also be parameterized with combining

14

functionstospecializehowcollisionsarehandledatdestinationsites.Thisisthemechanismusedtoprovide
combiningsendsin thelibrary.

Lastly,the librarywill provideanumberof utility algorithms.Thesemaybeimplementedon-topof
thebasealgorithms,butdirectimplementationsoftenrunfaster.Mostof thealgorithmsbelowarealready
implemented,andtheotherswill besoon.

GenericHigh-LevelFunctions
Algorithm UnsegmentedSegmentedComment
rank

hash_insert

hash_find

append

dist

subseq

shift

cshift

pack

unpack

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Rank the contents of a vector.

Insert elements into a hash vector.

Find elements in a hash vector.

Append vectors or segments.
Distribute a vector.

Extract a subsequence of a vector.

Compress a vector using a mask.

Decompress a vector using a
mask.

7 Interfacing with MPI

For the most part, implementing the vector operations using MPI was straightforward. MPI provides a

facility for describing messages of varying data types. The implementation of AVTL packs all messages

into buffers and simply sends them as bytes. For example, all permute functions are implemented by

gathering up data destined for each other processor and then sending it there in a single large message as a

stream of bytes.

One difficulty was encountered in the implementation of the scan and reduction algorithms. First of all,

MPI only defines inclusive scans because these do not require identity elements. To provide the necessary

exclusive scans, the AVTL implements inter-processor scans that provide both the inclusive and exclusive
scan values.

The most difficult part of implementing the scans and reductions is in the interface to the combining

operations. MPI is a compiled library with generalized scans that are parameterized by a pointer to a

combining function. The arguments handed to the combining function are specified by MPI. The AVTL

is built on function objects that have different argument lists from the MPI combining functions. Wrapper

functions were needed that applied the function object and arranged the arguments in the proper order

for MPI. Because these had to generalize to various types and function objects, they had to be template
functions.

The interface to the wrapper functions are dictated by MPI. The first two arguments are pointers to the

values to be combined, the third argument is a length, and the fourth is an MPI datatype. The uses of the

third and fourth arguments could not be modified, while the first two are for user data and must be the same

type. As mentioned earlier, the wrapper functions had to be parameterized by both value type and function

object. Thus, this two-way parameterization had to be accomplished in the type of a single argument.

The final version of the wrapper functions (all overload the name am_scan_funct ion in the library)

parameterize the first two arguments (the value arguments) by a nested template class that includes both the

15

valuetypeandfunctionobjecttype.This impliesthatthefunctionobject is included in the messages sent

between processors - even though it carries no data! Fortunately, an object with no data members occupies

only one byte. However, to maintain alignment, typically 4 or 8 bytes are wasted. These extra bytes are
sent by MPI and are never used. This overhead is negligible.

Requesting a pointer to the wrapper function causes the compiler to instantiate it. The use of nested

templates in this context confuses many compilers. In particular, the GNU C++ compiler (versions 2.5.8

through 2.6.2) cannot handle this correctly. Other compilers (such as IBM's xlC) handle the nested templates
with no problem. With the increased use of templates and the growing desire for acceptance of the STL, I

expect most compilers to handle these constructs in the near future.

8 Performance Tests

This section presents some performance data collected from test programs implemented using the AVTL.

The two platforms examined are the IBM SP-2 and the Intel Paragon. The intent is not to compare the two

machines (the POWER-2 processor of the SP-2 is much faster than the i860 of the Paragon), but to show
that the template based approach yields high performance.

This first implementation of the library uses very simple implementations for each of the vector algo-

rithms. Scans, for example, were implemented by using the inter-processor scan functions provided directly

by MPI. Permutations were implemented so that each processor exchanges a single large message with every

other processor. This approach was chosen simply to reduce development time. The intent of this library

was to experiment with the capabilities of template algorithms and to evaluate whether the compiler could

generate efficient code. I will point out the limitations of some of the implementations of the algorithms as

they are discussed by comparing the performance obtained to that of a library offering similar functionality:
the CVL library for MPI, implemented by Jonathon Hardwick at CMU [5].

The compilers used were xlC on the SP-2, and the GNU compiler (gcc, version 2.6.0) on the Paragon.

Full optimization was enabled for these tests. Sophisticated template usage is currently beyond the capa-

bilities of many C++ compilers, but the IBM compiler had no problem with any of the constructs of the

library. The GNU compiler, however, could not successfully instantiate functions with nested templates.

This is a known problem that will be fixed in the future. To circumvent this problem, the few functions that

use nested templates (see "MPI Wrapper Functions" above) were flattened one level manually.

Elementwise addition and multiplication operations were timed first by measuring the performance

obtained when applying a binary operator to two vectors that are much longer than the available cache of

the machine. The rates reported in Table 1 were computed including the time to allocate the result vector,

and thus reflect rates that could be achieved in a program written using the AVTL. These figures reflect the

ability of the compiler to transform the generic elementwise templates with template functions into efficient

loops. The rate achieved on the Paragon matches that reported by Hardwick. On the SP-2, I have observed

39 Mttops from the DAXPY mathematical library subroutine, and have been able to achieve 33 Mflops

by unrolling the loop four times by hand. I was surprised that the compiler could not achieve the same

performance, even with unrolling turned on.

The permutation functions were implemented so that each processor exchanges a single large message

with every other processor. Figure 1 shows the achieved bandwidth as a function of vector length on each

of the two machines. The SP-2 achieves its best bandwidth for vectors of 128K elements. At this length, the

entire vector fits in the rather large cache of the processor. Figure 2 evaluates the scalability of the algorithm

and shows the achieved bandwidth as the number of processors increases. While the implementation is

straightforward, it suffers from a lack of scalability, as the figure indicates.

16

Table1: Elementwiseperformanceforaverylongvector.

Machine Addition Multiplication

SP-2 16 Mflops 16 Mflops

Paragon 2.5 Mflops 2.5 Mflops

0.5,

0.4

0.3

MW/S/Proc

0.2

0.1

'_'--_--_._._._._____ SP-2, 32 Procs

._.

- Paragon, 32 Procs

....e.------------

I I I i I
256K 512K 1M 2M

Vector Length

Figure 1: Achieved bandwidth of the permute function as a function of vector length.

At the beginning of the algorithm, each processor must sort the data elements by their destination

processor ID. Then, for each other processor, a message is assembled and sent to the other processor. The

problem with this approach is that the processors alternately spend long periods of time computing locally,

and then all attempt to send large messages at approximately the same time. The network is first unused,

and then saturated. Increased asynchrony can help to spread the data traffic out more evenly.

Hardwick noted this problem in his MPI implementation of the CVL library. He chose to send many

small messages asynchronously and achieves performance roughly double that of the AVTL for permute

operations on the Paragon. In the future, the AVTL may adopt such an algorithm.

The AVTL provides compiled communication algorithms. These separate the specification of a com-

munication pattern with the actual movement of the data. While actual times are not reported here, in the

current implementation the compilation phase generally takes as much time as a single permute. Thus,

if a pattern is reused only twice, it pays to precompile the pattern. Figure 3 shows the bandwidth achieved

for both a regular send on the SP-2 and the run function for a compiled pattern. Figure 4 compares the

performance of compiled communication to a permute as the number of processors is increased. The initial

spike is probably due to the fact that the data to permute and the compiled communication fit into the cache

for very small vector sizes.

Figures 5 and 6 compare a regular permute to the bandwidth achieved in a compiled communication

17

0.5[

MW/S/Proc

0.2 .i-_L,__ o o

P0.1

II I I I
48 16 32 64

Paragon

Number of Processors

I
128

Figure 2: Scalability of the permute function for large vectors as the number of processors is increased.

1.75 L

1.5

1.25

MW/S/Proc 1

0.75

0.5

0.25

0

SP-2 Send

.f : t 4-

ill J I I I
256K 512K 1M 2M

Vector Length

Figure 3: Comparison of the achieved bandwidth of a regular permute and a compiled send on 32

processors of an IBM SP-2.

18

0.8

0.6

MW/S/Proc

0.4

0.2

Compiled

- Send

I I I I I
4 8 16 32 64

Number of Processors

Figure 4: Comparison of the scalability of a regular permute and a compiled send on the IBM SP-2.

Table 2: Performance of the NAS Conjugate Gradient (CG) benchmark implemented using the AVTL.

Machine Procs Normal (sec) Compiled (sec)

SP-2 16 169.0 57.0

32 71.5 28.6

Paragon 16 730.4 316.1
32 320.7 111.6

operation. In all cases the achieved bandwidth is approximately larger by a factor of two.

Figures 7 and 8 show the performance of the add_scan function on both the IBM SP-2 and the Intel

Paragon. I was able to verify that the implementations of MPI on both machines do not use a logarithmic

combining tree to implement their scan function, but instead use a linear chain! This fact helps to explain

why the performance degrades as severely as it does for large numbers of processors. Hopefully, a better

algorithm will be used in future versions of MPI.

8.1 An Application

Using the AVTL I wrote a version of the NAS Conjugate Gradient benchmark test and ran it on the SP-2

and the Paragon. Having written the code to use a regular get function, it was not difficult to modify it to

use compiled communication instead. Table 2 presents the performance obtained by this implementation.

Quite honestly, the performance achieved is not on par with the best implementations provided by the

computer vendors for this benchmark. My simple implementation did not attempt to minmize the amount of

inter-processor communication in any way. In fact, the structure of the matrix is nearly uniformly random,

19

0.4

0.3

MW/S/Pmc
0.2

0.1

- _"Paragon Compiled

_PamgonSend

0111 I I I I
256K 512K 1M 2M

VectorLength

Figure5: Comparisonof theachievedbandwidthof aregularpermute andacompiledsend ontheIntel
Paragon.

0.5

0.4

0.3

MW/S/Pmc

0.2

0.1

o

Compiled

Send

--A

I I I I I
8 16 32 64 128

Number of Processors

Figure 6: Comparison of the scalability of a regular permute and a compiled send on the Intel Paragon.

20

Mflops/S/Proc

10-

9

8

7

6

5

4-

3-

2-

1 "x -:

0 II

SP-2

Paragon

I I I I
256K 512K 1M 2M

Vector Length

Figure 7: Achieved per-processor performance for an add_scan function on 32 processors.

Mflops/S/Proc

11
10

9-

8-

7-

6-

5-

4-

3-

2-

1--_=

0 II I
48 16

"_ "_SP-2

Paragon
0 r'l

I I _f
32 64 128

Number of Processors

Figure 8: The scalability of the add_s c an function.

21

so that all processors send most of their data off processor. Performance could be improved by rearranging

the matrix using a heuristic such as recursive spectral bisection [10]. However, I should point out that the

the implementation using the AVTL is only about one page of code (excluding setting up the test matrix)
and was coded in about thirty minutes.

9 Conclusions

This paper presented an experiment in the design of a template-based collection library for distributed

address space parallel computers. The design of the library stresses the orthogonality of element types,

collection types, algorithms, and algebraic combining functions. By carefully differentiating between the

roles of each of these the library achieves genericity, efficiency and extensibility to user-defined data types.

The development of quality C++ compilers has been fueled by the PC and workstation markets. So-

phisticated template usage is only now beginning to be supported, largely driven by the desire for the

acceptance of the STL. This technology can also be beneficially employed by high-performance parallel

computer programmers for the encapsulation of generic parallel algorithms. Just as most MPPs are now

using commodity microprocessors whose development was driven by the workstation market (IBM SP-2,

Cray T3D, Convex Examplar, Intel Paragon, Thinking Machines CM-5), compiler technology driven by

those same large markets should be leveraged to enhance parallel programming productivity.

References

[1] G. Blelloch, S. Chatterjee, J. Sipelstein, and M. Zagha. CVL: a C Vector Library. School of Computer
Science, Carnegie Mellon University, 1991.

[2] G. E. Blelloch. Vector models for data-parallel computing. MIT Press, 1990.

[3] Cray Research, Inc. Cray Standard C Programmer's Reference Manual, SR-2074 4.0 edition.

[4] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation. Addison Wesley,
Reading, MA, 1983.

[5] J. C. Hardwick. Porting a vector library: a comparison of MPI, Paris, CMMD and PVM. Technical

Report CMU-CS-94-200, Carnegie Mellon University, 1994.

[6] IBM. Optimization and Tuning Guide for Fortran, C and C+ +, first edition, 1993.

[7] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, and M. E. Zosel. The High Performance Fortran
Handbook. The MIT Press, 1994.

[8] C. L. Lawson, R. J. Hanson, D. R. Kincald, and E T. Krogh. Basic linear algebra subprograms for

FORTRAN usage. ACM Trans. Math. Softw., 5:308-323, 1979.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, May 1994.

H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems in
Engineering, 2(2/3): 135-148, 1991.

[9]

[10]

22

[11]

[12]

A. Stepanov and M. Lee. The standard template library. Technical report, Hewlett-Packard Laborato-

ties, 1501 Page Mill Road, Palo Alto, CA 94304, October 1994.

B. Stroustrup. The C++ Programming Language, Second Edition. Addison-Wesley Publishing

Company, 1991.

[13] J. C. Wyllie. The Complexity of Parallel Computation. PhD thesis, Comell University, 1979.

A Code Examples

The examples in this appendix illustrate the simplicity and extensibility of the library. The first example

computes Pi by using a simple integration scheme and shows the entire program -- including runtime

initialization. The second example illustrates the extensibility of the library. A single genetic sparse

matrix-vector multiplication routine is extended to a blocked version simply by defining two new classes.

A.I Computing Pi

The first example illustrates a simple program that computes 7r by integrating f(x) = 4.0 from 0 to 1.

This code makes use of an instance of the class f of x as a function object (sometimes called afunctor)

with saved state. The constructor for the class produces an integrand function customized for a particular

value of h -- the width of the rectangle. The function accepts an index value, computes its z coordinate,

and returns the area of the rectangle at that coordinate. The rest of the program is straightforward.

// Example of a program to compute PI using the AVTL.

#include <stdlib.h>

#include <unistd.h> // for IBM SP2

#include "pvect.h" // Amelia Vector Template Lib

class f of x {

double h;

public:

f of x(double height) : h(height) { }

};

double operator() (int i) {

double x = (i + 0.5) * h;

return (4.0 * h) / (x * x

}

+ 1.0) ;

double

compute__pi(int n)

{

double h = 1.0 / n;

23

pvect<int> i = index(n);

pvect<double> rect = elementwise(f_ _

return add_reduce(rect);

of x(h), pvect<double>(, i);

int

main(int argc, char **argv)

{

_mem = new am_mem_mgmt(argc, argv); // parallel runtime

double pi = compute_pi(lO0000);

printf("Pi is %f\n", pi);

delete _mem; // terminate runtime

A.2 Sparse matrix-vector multiplication

This second example shows how a user can write a generic function and extend it to new types. The function

mvmult performs a sparse matrix-vector multiply operation for a matrix stored in compressed sparse row

format. The elements of each row are stored contiguously along with an integer describing the column

of each element. A segment descriptor divides the elements and column labels into rows. The sparse

matrix-vector multiplication function follows, along with a code fragment showing an example of its usage

where the elements of the matrix and vector are simple floating point values.

template <class A, class V>

pvect<V> mvmult(pvect<A> a, pvect<int> cols, pvect<int> seg, pvect<V> v)

// (a,cols,seg) describe a sparse matrix in compressed sparse row format.

// v is the vector.

pvect<V> g = get(v, cols);

pvect<V> p = g * a;

pvect<V> r = add_reduce(p,

return r;

seg);

// Code fragment of usage

pvect<double> mata omitted

pvect<double> veca omitted

pvect<int> cols omitted

pvect<int> segs omitted

. ° °

• • o

• • °

pvect<double> resa = mvmult(mata, cols, segs, veca);

Many sparse codes can benefit by using blocked algorithms. It is possible to extend the above mvmult

function to operate with a blocked sparse matrix merely by defining new element types. In this case, the

24

elements of the matrix will be dense blocks, and the elements of the vector will be block vectors. The code

that follows shows the declarations of the block matrix and block vector classes, as well as the addition and

multiplication operators required. Function mvmult is not modified in any way, but automatically extends

to the new types.

class blockmat {

public :

int vals[5] [5] ;

blockmat () { }

blockmat(double init)

// Initialize to scaled identity matrix

{

for (int r = O; r < 5; r++)

for (int c = O; c < 5; c++)

vals[r] [c] = r == c ? init : 0.0;

};

class blockvec {

public:

int vals[5];

blockvec() { }

blockvec(double init)

{

for (int i = 0; i < 5; i++)

vals[i] = init;

}

};

blockvec operator*(blockvec v, blockmat a)

// Multiply a block vector by a block matrix.

{

blockvec x(0.0);

for (intc = 0; c < 5; c++)

for (int r = 0; r < 5; r++)

x.vals[c] += a.vals[r] [c] * v.vals[r];

return x;

blockvec operator+(blockvec a, blockvec b)

// Add two block vectors.

{

blockvec c;

for (int i = 0; i < 5; i++)

c.vals[i] = a.vals[i] + b.vals[i];

return c;

25

// Code fragment of usage

pvect<blockmat> matb omitted

pvect<blockvec> vecb omitted

pvect<int> cols omitted

pvect<int> segs omitted

• • °

° • •

pvect<blockvec> resb = mvmult(matb, cols, segs, vecb);

This call to mvmult will be instantiated for a block matrix and a block vector. With the appropriate

model of matrix elements, this generic function applies to scalar elements or dense blocks. This short

example is a dramatic demonstration of the code reuse that is possible with generic libraries.

26

RIACS
Mail Stop T041-5

NASA Ames Research Center

Moffett Field, CA 94035

